Acyl-O versus Aryl-O Bond Scission in Reactions of Benzenethiolate with Nitrophenyl Esters of Carboxylic Acids

By GIUSEPPE GUANTI,* CARLO DELL'ERBA, FRANCESCA PERO, and GIUSEPPE LEANDRI

(Istituto di Chimica Organica dell'Università, Palazzo delle Scienze, Corso Europa, 16132 Genova, Italy)

Summary A number of nitrophenyl esters of carboxylic acids have been found to undergo both carbonyl carbon-oxygen and aryl carbon-oxygen scission in reactions with the benzenethiolate ion in ethanol; the fraction of C_{co} -O scission increases with increasing polarity of the medium and varies, according to the ester substrate, from 100% with *p*-nitrophenyl acetate to 0% with 2,4,6-trintrophenyl benzoate.

WHILE competition between two electrophilic centres in a single ester substrate is well documented¹ for reactions of nitrophenyl sulphonates, sulphates, and phosphates with nucleophiles, for carboxylic esters mostly acyl-O fission takes place.^{1,2} Partial Ar-O fission is reported only for picryl benzoate in neutral methanol³ and for *p*-nitrophenyl acetate with piperidine in dimethyl sulphoxide.⁴

During research on the reactivity of thiols towards phenyl esters of carboxylic acids,⁵ we have surprisingly found that a significant fraction of the reaction between 2,4-dinitrophenyl acetate (2,4-DNPA) and sodium benzenethiolate in ethanol proceeds with attack on C-1 of the phenolic group to give 2,4-dinitrophenyl phenyl sulphide by nucleophilic aromatic substitution. This result is reported in the Table, together with the modes of scission and the rate constants for $CO(k_{co})$ and $Ar(k_{Ar})$ attack in the reactions of sodium benzenethiolate with five other ester substrates, p-nitrophenyl acetate (PNPA), p-nitrophenyl benzoate (PNPB), 2,4-dinitrophenyl benzoate (2,4-DNPB), 2,6-dinitrophenyl benzoate (2,6-DNPB), and 2,4,6-trinitrophenyl benzoate (2,4,6-TNPB). In two cases (for 2,4-DNPB and 2,4,6-TNPB) the reaction has also been carried out with piperidine; for the reaction of 2,4-DNPB with benzenethiolate the solvent effect on k_{co} and k_{Ar} has been determined.

TABLE										
Ester				Nucleophile	k_{tot}^{a}	%C _{co} -O	$k_{\rm CO}^{\rm a}$	k_{Ar}^{a} Solvent		nt
NPA	••	••	••	PhSNa	0.22p	100	0.25		Ethanol	95%
PNPB	••	••	••	\mathbf{PhSNa}	0.026	100	0.026		,,	,,
2,4-DNPA	¥			PhSNa	57.0	48.8	27.8	29.2	,,	,,
2,4-DNPI	3	• •		PhSNa	8.9	24.3	$2 \cdot 2$	6.7	Methanol	
2,4-DNPI	3			PhSNa	64 ·0	16.7	10.7	53.3	Ethanol	95%
2,4-DNPI	3	• •		Piperidine	18.5	100	18·5°		,,	,,
2,6-DNPI	З	• •	• •	PhSNa	2.61	10.5	0.27	2.34	,,	,,
2,4,6-TNI	PB	••		$PhSNa^{d}$		0			,,	,,
2,4,6-TNI	PB	••	••	Piperidine	93	100	93c		,,	,,

TADTE

*1 mol⁻¹ s⁻¹; T = 22 °C; [PhS⁻] = 2 × 10⁻⁴—8 × 10⁻⁵ M; [piperidine] = $4 × 10^{-4}$ M; [ester] = 10^{-5} —5 × 10⁻⁴ M. ^b Value taken from ref. 5. ^c Calculated by dividing the observed pseudo-first order rate coefficient by [piperidine]. ^d Reaction too fast to be followed by usual spectrophotometric (u.v.) technique.

The results show that while PNPA undergoes total C_{co} -O scission by benzenethiolate, 2,4-DNPA is only about 49% cleaved in this manner owing to the strong activation of the 1-position of the phenolic group by the two nitro groups. The percentages of C_{co} -O cleavage drop to about 17% and 10% with 2,4-DNPB and 2,6-DNPB respectively and 2,4,6-TNPB is totally cleaved by C_{Ar} -O scission. k_{co} increases in the series $PNPB < PNPA \leq 2,6-DNPB < 2,4-$ DNPB < 2,4-DNPA, and k_{Ar} increases in the series 2,6-DNPB < 2,4-DNPA < 2,4-DNPB < 2,4,6-TNPB. The orientation of the attack seems to depend mainly on the relative 'hardness' and 'softness' of the carbonyl carbon and the aryl carbon respectively.⁶ This is confirmed by the fact that, while 2,4-DNPB is cleaved by benzenethiolate (a 'soft' base) mainly with aryl-O fission, in the reaction with piperidine (a 'hard' base) 2,4-DNPB undergoes total acyl-O fission. Also, with 2,4,6-TNPB the percentage of attack at the trinitrophenyl carbon varies from 100% with benzenethiolate to 0% with piperidine. It is noteworthy that, conversely from nucleophilic aromatic substitutions' where $k_{\text{PhS}-} \gg k_{\text{pip}}$, for CO attack in the case of 2,4-DNPB k_{pip} : $k_{\text{PhS}-} > 1.0$. This result is in accord with the fact that for CO attack the rates vary fairly regularly with the $pK_{\mathbf{a}}$ of the nucleophile.²

In the reaction of 2,4-DNPB with sodium benzenethiolate, the percentage of attack at the carbonyl carbon increases on going from ethanol to methanol. Both k_{Ar} and $k_{\rm co}$ decrease with increasing polarity of the medium but the solvent effect for Ar attack is larger than for CO attack. We thank C.N.R. for support of this work.

(Received, 11th August 1975; Com. 924.)

¹ H. Feuer, 'The Chemistry of the Nitro and Nitroso Groups,' ed. S. Patai, Interscience, New York, 1969; E. Buncel, C. Chuaqui, P. Forsythe, S. Mahoney, A. Raoult, and J. F. Wiltshire, *J.C.S. Perkin 11*, 1975, 478. ² A. J. Kirby in 'Comprehensive Chemical Kinetics,' eds. C. H. Bamford and C. P. H. Tipper, Elsevier, Amsterdam, vol. 10, 1972; M. L. Bender, 'Mechanism of Homogeneous Catalysis from Protons to Proteins,' Wiley-Interscience, New York, 1971.

3 A. Kirkien-Konasiewicz, G. Sammy, and A. Maccoll, Nature, 1964, 637; A. Kirkien-Konasiewicz and A. Maccoll, J. Chem. Soc., 1964, 1267.

⁴ H. Suhr, Chem. Ber., 1964, 3268.
⁵ G. Guanti, C. Dell'Erba, F. Pero, and G. Leandri, J.C.S. Perkin II, 1975, 212.
⁶ J. O. Edwards and R. G. Pearson, 'Hard and Soft Acids and Bases,' ed. R. G. Pearson, Dowden, Hutchinson, and Ross, Stroudsburg, 1973.

J. Miller, 'Nucleophilic Aromatic Substitution,' Elsevier, Amsterdam, 1968.